This invention relates to pencil sharpeners and more particularly to the well known type incorporating two substantially cylindrical cutters in diametrically opposed converging relationship.

A demand has arisen for a pencil sharpener capable of being adjusted readily to produce different degrees of sharpness of pencil points, so that the user is not confined to a standard sharpness of point, which may not be suited to his or her particular needs or for the particular kind of pencil being used. I am aware that efforts have been made by others in this direction, but their designs of pencil sharpeners have been too complicated and expensive to manufacture or were limited to use of a single cutter, being not at all practical if applied to the conventional two-cutter type sharpener mentioned above. For example, in one of the prior designs (Yeates Patent No. 2,438,628) the spacing of the converging cutters was increased and the cutters were arranged to cut all but the point portion of the lead, while an auxiliary cutter, functioning as a combination pencil stop and point cutter, was adjustable axially between the converging ends of said cutters into the space therebetween, the auxiliary cutter having a substantially V-shaped cutting edge to sharpen the end portion of the lead to a sharp, blunt or medium point according to the length of lead protruding from the wood as predetermined by the adjustment. The converging cutters, being of hardened steel, and the auxiliary cutter being also necessarily of hardened steel, the need for increased spacing of the converging cutters is self evident; any rubbing of the auxiliary cutter on the other cutters would soon render the same too dull for good operation. Moreover, bearing in mind the fact that the auxiliary cutter's V-shaped cutting edges were adapted only to do a scraping operation on the lead, not a true cutting operation, it will be evident that breakage of the lead, especially soft lead, was inevitable unless the auxiliary cutter blade was guided for adjustment in a plane exactly on the center line of the pencil, with the apex of the V in the blade accurately located coincident with the axis of the pencil and the axis of rotation of the cutter frame being balanced against application of cutting pressure to the protruding end portion of the lead being pointed, and thus reduce likelihood of the blade gouging the lead and breaking off the point. It is, therefore, one of the principal objects of my invention to provide a pencil sharpener in which:

1. The two main converging cutters are in a normal closely spaced relationship, so as to take care of the entire cutting operation with the exception of tapering the extreme tip portion of the lead, and

2. The auxiliary cutter blade, which is of rectangular form and has a V-shaped cutting edge on its inner end portion to taper the tip or point portion of the lead, is disposed in a plane between the closely spaced inner ends of the converging cutters, and is cut away intermediate its ends to eliminate any likelihood of any rubbing contact with these cutters or their drive pinions, and is connected on the outer side of the cut-out portion with manually operable adjusting means adjustable axially from the outer end of the crank operated shaft of the sharpener, said blade being slidablely guided by its longitudinal edge portions both inwardly and outwardly relative to the converging end portions of said main cutters to keep the blade in the central plane clear of the cutters and also positively insure the accurate positioning thereof coaxially with respect to the pencil being sharpened and the axis of operation of the sharpener, so that the V-shaped cutting edge on the blade trims the point on the pencil lead correctly in every position of axial adjustment of the blade, the blade functioning thereby both for the point dressing or trimming operation and as a stop to limit insertion of the pencil and accordingly predetermine the length of the protruding point portion.

Another object is to provide a pencil sharpener of the kind described above, in which the guides for the innermost portion of the auxiliary cutter blade are provided by grooves in the diametrically opposed inner ends of plates that are radially adjustable in the rotary frame for infinite adjustment and arranged to be clamped frictionally in their finally adjusted positions, whereby to enable accurately locating the apex of the V in the blade coincident with the axis of the pencil and the axis of rotation of the frame and assure such location in any degree of adjustment of the blade.

The invention is illustrated in the accompanying drawing, in which—

Fig. 1 is a vertical section lengthwise through a pencil sharpener embodying my invention;

Figs. 1a and 1b are illustrations of the pointed end of a pencil, showing the points obtainable with the sharpener of Fig. 1 with different settings of the auxiliary cutter blade;

Fig. 2 is a horizontal section on the line 2—2 of Fig. 1, showing only the rotary frame and parts thereon;
Fig. 3 is a sectional detail on the line 3—3 of Fig. 1, to better illustrate the adjustability of the guide plates and the way in which they are clamped in adjusted positions; Fig. 4 is a view similar to a portion of Fig. 2, illustrating how the metal slug in the metal sleeve insert is drilled through in the drilling of the axial hole in the die-cast rotary frame, and Fig. 5 is an enlarged sectional detail of the same end of the rotary frame after the drilling, boring, and broaching operations have been completed. The same reference numerals are applied to corresponding parts throughout the views. Referring first to Figs. 1 to 3, the reference numeral 6 designates the standard for the pencil sharpener, which has the usual attaching flange or base portion 7 on one end and a hub portion 8 on the other end adapted to support the usual chip receptacle 9, it being common practice to provide a bayonet lock connection between the hub 8 and receptacle 9, so that the latter may easily be removed from time to time to empty the contents and be as easily replaced. A bearing 10 is provided in the hub 8 for the drive shaft 11, which is formed as an integral part of the rotary frame 12 of the pencil sharpener adapted to be turned by means of the crank 13 to transmit drive to the diametrically opposed, substantially cylindrical, helical milling cutters 14 that are mounted in the frame 12 in converging relation on spindles 15. The frame 12 includes a neck portion 17 on its outer end in concentric relation to the shaft portion 14, through which the end portions of a pencil to be sharpened is entered. The cutters 14 have drive pinions 16 fixed on their inner ends, which mesh with an internal ring gear 17 that is suitably fixed in a recess 18 provided therefor in the hub 8, so that the cutters 14 are caused to turn on their spindles 15 as they are revolved with the frame 12 when the same is turned by means of the crank 13. The diametrically opposed side portions 19 of the frame 12 extend in inwardly converging relation, as indicated in Fig. 1, at a slightly larger angle than the cutters 14, so as to provide lateral support for the tapered end of the pencil as the pencil is sharpened and fed inwardly by hand, or otherwise. It has heretofore been common practice to provide on the frame 12 within the chip receptacle a stop for abutment with the pencil point, working between the inner ends of the cutters in front of the drive pinions, to limit the inward movement of the pencil and provide a given sharpness of pencil point, the stop being usually in the form of a bell-crank member pivoted on the frame with one arm or finger thereof reaching inwardly between the cutters to act as the stop, this bell-crank member being set at the factory in a fixed position by bending the other arm of the bell-crank member at the time of assembling the sharpener. However, a demand has arisen for a pencil sharpener capable of being adjusted readily externally to produce different degrees of sharpness of pencil points, so that the user will not be confined to a standard sharpness of point, which might not happen to be suited to his or her particular need, or might not be best adapted for a particular kind of pencil being used. For that reason efforts have been made to provide a point sharpener from the outside of the pencil sharpener, but, as has been pointed out before, the designs proposed have been too complicated and expensive to manufacture and were not practical as applied to the conventional two-cutter type sharpeners, such as that herein illustrated and just described. It is important that the close cutting edges thereon be accurately ground with a special undercut for durability and knife-like cutting on wood and lead alike. Furthermore, as indicated by the dot and dash lines a and b in Fig. 2, the inner end portions of the cutters have a slight taper so as to enable making a longer point, as at 20, on the pencil than would be permitted were the point a direct continuation of the taper 21 on the end of the pencil 22, as illustrated in Fig. 1a. The sharpness of the pencil point must, therefore, be determined, at least in part, by the closeness of spacing of the inner ends of the cutters 14, and, obviously, that leaves very little room through which to operate any external point adjustment. Furthermore, any point to predetermine by the setting thereon of the sharpness of the point by predetermining the length of the lead beyond the taper of the wood on the pointed end of the pencil. This limitation upon the design of a pencil sharpener with an outside operating point sharpening adjustment is what led others, like the patentee Yerkes, mentioned above, to conclude that the pencil sharpener would have to be substantially completely redesigned to the extent of utilizing the cutters 14 to cut all but the point portion of the lead and providing a separate axially adjustable blade with a V-shaped cutting edge on the inner end thereof to cut the point on the lead to whatever sharpness of point was desired and predetermined by the adjustment of this blade. This blade was necessarily a hardened blade and precautions had to be taken to insure against its coming into contact with the revolving cutters, and that explains the change by Yerkes, for example, in the spacing of the revolving cutters to the extent where they were capable of attending to only the point portion of the lead. However, I have found a much more practical solution to the problem, by providing an auxiliary cutter blade 24 that serves partly as a blade and partly as a stop, the same having a V-shaped cutting edge 25 provided on the inner end thereof to trim only the very end of the pencil lead, as at 26, regardless of the length of the protruding point portion (as should be evident from a comparison of Figs. 1a and 1b), this blade 24 being cut away intermediate its ends, as at 27, to eliminate any likelihood of any rubbing contact with the cutters 14 or their drive pinions 16, the cutters being as closely spaced as the substantially complete sharpening operation on the pencil requires. The blade 24 is connected on the outer side of the cut-out portion 27, as at 28, with the manually adjustable stem 29 that is adjustable axially from the outer end of the crank-operated shaft 14 to the point where the arm 16 and said blade 24 being slidably guided by its longitudinal edge portions both inwardly and outwardly relative to the converging end portions of the cutters 14, so as to keep the blade in the central plane clear of the cutters 14 and also stop readily adjustable therefrom coaxially with respect to the point being sharpened and the axis of operation of the sharpener, so that the apex of the V 25 is always on the axis of operation regardless of the ex-
tent of axial adjustment of the blade 24. This fine hair accuracy as to location of the apex of the V 25 would be practically impossible of attain-ment if the blade 24 were guided only behind, that is, to say, on the internal threading of the bore-ging end portions of the cutters 14, but it is rela-tively easily obtainable when, in accordance with my invention, radially adjustable guide plates 31 and 32 are provided, affording on their di-arametrically opposed inner ends guide grooves 33 in which they are on the end portion of the bore 24, has a close working fit. The plates 31 and 32 are adjustable radially and infinitesimally on the flat faces 34 on lugs 35 provided on diametrically opposite sides of the frame 12. The faces 38 are accurately formed in parallel relation to a plane through the axis of rotation of frame 12 and are so spaced from said plane that the grooves 33 will guide the blade 24 accurately in the aforesaid plane. Screws 36, which are threaded in holes in the lugs 35, extend freely through holes 37 in the radially outer end portions of the plates 31 and 32 produced by the tightening, for clamp the plates 31 and 32 in their accurately adjusted positions, providing not only for the desired closeness of fit between the parts 31, 32 but also the close accuracy required so far as the location of the apex of the V 25 is concerned. Consequently there is evenly bal-anced application of cutting pressure to the pro-truding end portion of the lead being pointed, as at 26 in Figs. 1a and 1b, and the small amount of scraping done by the V-shaped cutting edge 25 does not involve any likelihood of the blade gouging the lead and breaking off the point. When the blade 24 is adjusted to the extreme retracted position, as shown in Fig. 1, the sharpest and longest point illustrated in Fig. 1a is producible, and it is obvious that the cutters 14 perform substantially the entire cutting operation on the flange and lead, the V-shaped cutting edge 25 on the blade 24 serving merely to trim or taper the tip portion, as at 26, so as to give a substantially uniform writing quality regardless of the sharpness or bluntness of the point of the pencil. The sharpened tip of the point is not the apex of the V 25. The sharpened tip 26 of the pencil point 28 rests on the apex of the V 25 in the blade 24, and in that way the sharpening opera-tion is limited both by engagement of the tapered end portion 21 of the pencil on the converging sides of the portion 19 of the frame 12 and by abutment of the tip 26 of the pencil point 20 at the apex of the V 25. Now, on the other hand, if the blade 24 is adjusted inwardly by means of the stem 25 to any position within the range of axial adjustment of the blade, it should be evident that the pencil point produced will accordingly be shorter and blunter, as illustrated, for example, in Fig. 1b, although even with such a blunt point the tapering end portions 21 of the pencil on the sides of the converging faces 19, 12. The fact that the plates 31 and 32 are so accurately adjusted to keep the apex of the V 25 on the axis of rotation throughout the range of adjustment of the blade 26 assures satisfactory operation of the sharper in all stages of adjustment for any pencil point the operator may select.

The means for adjusting the blade 24 and in-dicating the adjustment selected is like that dis-closed in the copending application Serial No. 77,562, in which I am named as joint inventor with Andrew P. Solem, and it will suffice to state that the stem 25 has an enlarged threaded portion 38, which threads in the internally-threaded end portion 39 of the bore 40 of a sleeve 41 that forms an axial extension of the shaft portion 11 of the rotary frame 12, and that there are di-arametrically opposed grooves 42 extending longitudinally in the bore 40 of the sleeve 41 and the con-tinuation 43 of this bore in the frame 12, and that the opposed longitudinal edge portions of the blade 24 are saddle in these grooves 42 as should be evident from Figs. 1 and 2, whereby to provide, supplementary to the guiding function of the plates 31 and 32, guides for the blade 24 outwardly relative to the inner end of the stem 29 works in a T-slot 44 provided in the outer end of the blade 24 for a swivel operating connection. The hub 45 of the crank 13 is suitably threaded onto the outer end of the sleeve 41 and has an annular recess 46 therein in which the rim portion of cupped indicator dial 47 is slidably and freely rotatable, this dial being secured to the stem 29 by means of the knob 30 and having triangular-shaped indicator markings 48 on the periphery thereof in circumferentially spaced relation, as fully illustrated and described in a copending application, Serial No. 77,562, filed February 21, 1949. With these markings the operator can see in advance of sharpening a pencil the kind of point he will obtain with any given setting, because the farther the stem 29 is ad-justed inwardly by means of the knob 30 the more the apex portions of the triangular mark-ings 48 are covered up by the hub portion 45. The washers 48 that are compressed between the end of the sleeve 41 and the socket in the inner wall of the hub 45 exert a friction drag on the stem 29 to hold the stem in any position of ad-justment, so that it will not be apt to be turned accidentally, or by reason of inertia, in opera-tion of the crank 13.

In conclusion, attention is called in Figs. 4 and 5, to the fact that the sleeve 41, which is of any suitable material, is preferably in the form of an insert in the die-cast frame 12, the die-cast metal being molded around the inner end portion of the sleeve 41, where annular grooves 50 and a plurality of circumferentially spaced key-pro-jections 51 are provided to insure a good driving connection between the sleeve and body in the finished product. When the sleeve 41 is inserted in the mold of the die-casting machine, the prob-lem of how to close the bore 40 in the tubular part, to prevent molten die-cast metal from en-tering, is presented, and, with that in mind, a counterbore 52 is provided in the lower end of the sleeve 41 into which a metal slug or disk 53 is pressed to seal the inner end of the bore 40 preliminary to the die-casting operation. Then, after the die-casting operation, a hole is drilled through the slug 53, as at 54, with a drill 55 working in the bore 40 in the sleeve 41 as a guide and drilling the hole 43 as a continuation of the bore 40. The usual finish boring operation trues up the bore 40-43, and grooves 42-42' may be
broached in one operation, or the previously broached sleeve 41 may be used as a guide in broaching the grooves 42 in the bore 43, cutting through the slug 53 at diametrically opposed points, as indicated at 56. Very little of the original slug 53 is, therefore, left in the final piece, as is indicated in Figs. 2 and 5.

It is believed the foregoing description conveys a good understanding of the objects and advantages of my invention. The appended claims have been drawn to cover all legitimate modifications and adaptations.

I claim:

1. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylindrical milling cutters carried by said head with their cutting faces in converging relationship to form a tapered space between said cutters, said cutters being of sufficient length and disposed close enough together to be capable of performing substantially the whole sharpening operation on an elongated pencil, a rectangular blade movably on said head endwise toward and between the converging ends of said cutters and having in its inner end portion a V-shaped cutting edge for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, guides slidably supporting the opposed longitudinal edge portions of said blade both inwardly and outwardly relative to the converging ends of said cutters whereby positively to prevent rubbing contact of said blade with either of said cutters and also insure accurate location of the apex of the V-shaped cutting edge always on the axis of rotation of said head and disposition of the blade in a plane coincident with said axis in all positions of endwise adjustment of said blade, means for turning said head to operate said cutters, and means for adjusting said blade.

2. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylindrical milling cutters carried by said head with their cutting faces in converging relationship to form a tapered space between said cutters, said cutters being of sufficient length and disposed close enough together to be capable of performing substantially the whole sharpening operation on an elongated pencil, a rectangular blade movably on said head endwise toward and between the converging ends of said cutters and having in its inner end portion a V-shaped cutting edge for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, guides slidably supporting the opposed longitudinal edge portions of said blade both inwardly and outwardly relative to the converging ends of said cutters whereby positively to prevent rubbing contact of said blade with either of said cutters and also insure accurate location of the apex of the V-shaped cutting edge always on the axis of rotation of said head and disposition of the blade in a plane coincident with said axis in all positions of endwise adjustment of said blade, means for turning said head to operate said cutters, and means for adjusting said blade.

3. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylin-

4. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylindrical milling cutters carried by said head with their cutting faces in converging relationship to form a tapered space between said cutters, said cutters being of sufficient length and disposed close enough together to be capable of performing substantially the whole sharpening operation on an elongated pencil, a rectangular blade movably on said head endwise toward and between the converging ends of said cutters and having in its inner end portion a V-shaped cutting edge for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, guides slidably supporting the opposed longitudinal edge portions of said blade both inwardly and outwardly relative to the converging ends of said cutters whereby positively to prevent rubbing contact of said blade with either of said cutters and also insure accurate location of the apex of the V-shaped cutting edge always on the axis of rotation of said head and disposition of the blade in a plane coincident with said axis in all positions of endwise adjustment of said blade, means for turning said head to operate said cutters, and means for adjusting said blade.

5. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylin-

6. A pencil sharpener comprising a support, a head rotatably mounted on said support, a pair of diametrically opposed substantially cylindrical milling cutters carried by said head with their cutting faces in converging relationship to form a tapered space between said cutters, said cutters being of sufficient length and disposed close enough together to be capable of performing substantially the whole sharpening operation on an elongated pencil, a rectangular blade movably on said head endwise toward and between the converging ends of said cutters and having in its inner end portion a V-shaped cutting edge for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, guides slidably supporting the opposed longitudinal edge portions of said blade both inwardly and outwardly relative to the converging ends of said cutters whereby positively to prevent rubbing contact of said blade with either of said cutters and also insure accurate location of the apex of the V-shaped cutting edge always on the axis of rotation of said head and disposition of the blade in a plane coincident with said axis in all positions of endwise adjustment of said blade, means for turning said head to operate said cutters, and means for adjusting said blade.
posed close enough together to perform the whole sharpening operation on a pencil, the inner end portions of said cutters which cut the lead of the pencil being tempered so that the point produced by the cutters is of smaller angle than the tempered end of the wood of the pencil produced by the cylindrical main portion of the converging cutters, an elongated rectangular blade movable on said head endwise toward and between the converging ends of said cutters and having in its inner end a V-shaped cutting edge for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to a plane passing mid-way between said converging ends for adjustable supporting guide plates, guide plates slidable adjustable to an infinitesimal degree radially relative to said frame on said surfaces, means for fastening said plates onto said surfaces in their adjusted position, a blade of rectangular form slidable endwise in said journal for axial adjustment between the converging ends of said cutters, and having its inner end portion closely slidable guided between the radially inner ends of said guide plates for endwise movement solely on the axis of rotation of said frame and journal, said blade having a V-shaped cutting edge on its inner end for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, guides slidable supporting said plate for endwise movement solely on the axis of rotation of said frame and journal, said blade having a V-shaped cutting edge on its inner end for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, a rotatable handle having a hub portion fixed on the outer end portion of said journal for turning said frame, and an adjusting stem threaded axially in the journal and having a swivel operating connection with the outer end of said blade to move the same selectively in either direction a selected distance.

A pencil sharpener comprising a support, a frame including a hollow driven journal end portion rotatably mounted in and projecting through a bearing on said support, milling cutters carried rotatably in said frame, a frame first portion forming between them a space, a gear fixed on the support with which pinions fixed on the cutters have meshing engagement, whereby to drive said cutters, said frame including longitudinally extending diametrically opposed side portions adjacent the converging end portions of said cutters on which are provided flat surfaces lying in a plane passing mid-way between said converging ends for adjustable supporting guide plates, guide plates slidable adjustable to an infinitesimal degree radially relative to said frame on said surfaces, means for fastening said plates onto said surfaces in their adjusted position, a blade of rectangular form slidable endwise in said journal for axial adjustment between the converging ends of said cutters, and having its inner end portion closely slidable guided between the radially inner ends of said guide plates for endwise movement solely on the axis of rotation of said frame and journal, said blade having a V-shaped cutting edge on its inner end for tapering only the extreme tip portion of the pencil lead, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, a rotatable handle having a hub portion fixed on the outer end portion of said journal for turning said frame, and an adjusting stem threaded axially in the journal and having a swivel operating connection with the outer end of said blade to move the same selectively in either direction a selected distance.
11 dinal edge portions of said blade are slidably en-
5 saged for a close guiding function.
10 A pencil sharpener as set forth in claim 7
wherein said plates have grooves provided in
5 their inner ends wherein the opposed longitu-
dinal edge portions of said blade are slidably en-
saged for a close guiding function, and wherein
said journal has grooves provided therein in
coplanar relationship with the grooves in said
plates and also slidably receiving the opposed
longitudinal edge portions of said blade but with
a looser fit.
15 B. A pencil sharpener comprising a support,
a head rotatably mounted on said support, a pair
of diametrically opposed substantially cylindrical
milling cutters carried by said head with their
5 cutting faces in converging relationship to form
a tapered space between said cutters, said cutters
being of sufficient length and disposed close
enough together to perform substantially the
whole sharpening operation on a pencil, said
head having an elongated tubular axial drive ex-
tension received in and projecting through a
bearing provided thereon for said support, there
being drive pinions on said support meshing with
a gear fixed on said support, and a hand crank
attached to the outer end of said tubular exten-
sion to drive said head, an elongated, rectangu-
lar, combination pencil point trimmer and stop
blade slidably guided by its longitudinal edge por-
tions in grooves provided inside said extension
extending lengthwise thereof, whereby the blade is
movable endwise substantially axially relative
to the head in a plane between the converging
ends of said cutters, the inner end portion of
said blade having a V-shaped cutting edge there-
5 in for trimming abutment with the tip of a pencil
point and as a limiting stop thereon, means ad-
justable externally of the sharpener axially in
the outer end of said extension adapted to trans-
mit endwise adjustment movement to said blade,
and radially adjustable guides on said head on
the opposite side of the converging ends of said
milling cutters from said drive extension disposed
in coplanar relationship with the guide grooves in
said extension and slidably engaging with a close
fit the longitudinal edge portions of said blade,
whereby said guides, when properly adjusted, in-
sure accurate location of the apex of the V-
shaped cutting edge on the axis of rotation of
said head in all positions of endwise adjustment
of said blade.
12 As an article of manufacture, a rotary
frame for supporting the milling cutters of a
5 crank operated pencil sharpener, said frame in-
cluding a main body casting terminating at one
end in a tubular driven journal portion of an-
other metal, said journal tube having a counter-
bore provided in its inner end, and a metal disc
inserted tightly in said counterbore to seal the
5 tube during the casting of the body integral with
the inner end portion of said tube, said disc hav-
ing a hole provided therein in register with the
bore of the tube and with a bore provided in the
cast main body portion of said frame.
17 As an article of manufacture, a rotary
frame for supporting the milling cutters of a
5 crank operated pencil sharpener, said frame in-
cluding a main body casting terminating at one
end in a tubular driven journal portion of an-
other metal, and a cover element sealing the
inner end of said tube during the casting of the
body integral with the inner end portion of said
5 tube, said cover element having a bore provided
therein in register with the bore of the tube and
with a bore provided in the cast main body por-
tion of said frame.
20 As an article of manufacture, a cast body
having a tubular extension formed by a tube of
other metal as an insert in the casting of said
body in a mold, the tube having a counterbore
provided in its inner end, and a metal disc fit-
ting tightly in said counterbore to seal the bore
of said tube during the casting of said body inte-
gral with the inner end portion of said tube, said
disc having a hole provided therein in register
with the bore of the tube and with a bore pro-
vided in the cast body.
25 As an article of manufacture, a cast body
having a tubular extension formed by a tube of
other metal as an insert in the casting of said
body in a mold, and a cover element sealing the
inner end of said tube during the casting of said
body integral with the inner end portion of said
tube, said cover element having a hole provided
therein in register with the bore of the tube and
with a bore provided in the cast body.
30 A pencil sharpener comprising a support,
a head rotatably mounted on said support, a pair
of diametrically opposed substantially cylindrical
milling cutters carried by said head with their
cutting faces in converging relationship to form
a tapered space between said cutters, said cut-
ters being of sufficient length and disposed close
enough together to be capable of performing sub-
stantially the whole sharpening operation on a
pencil, an elongated rectangular blade mova-
ble on said head endwise toward and between
the converging ends of said cutters, the endwise
adjustment of said blade relative to said cutters
predetermining the length of the lead protrud-
ing from the pencil when sharpened, guides slidably
supporting the opposed longitudinal edge por-
tions of said blade both inwardly and outwardly
relative to the converging ends of said cutters
whereby positively to prevent rubbing contact of
said blade with either of said cutters and also
insuring accurate disposition of the blade in a plane
coincident with the axis of rotation of said head
in all positions of endwise adjustment of said
blade, means for turning said head to operate
said cutters, and means for adjusting said blade.
65 A. A pencil sharpener comprising a support,
a head rotatably mounted on said support, a pair
of diametrically opposed substantially cylindrical
milling cutters carried by said head with their
cutting faces in converging relationship to form
a tapered space between said cutters, said cut-
ters being of sufficient length and disposed close
enough together to be capable of perform-

ing substantially the whole sharpening opera-
5 tion on a pencil, an elongated rectangular blade
movable on said head endwise toward and be-
5 tween the converging ends of said cutters, the
endwise adjustment of said blade relative to said
cutters predetermining the length of the lead
protruding from the pencil when sharpened,
guides slidably supporting the opposed longi-
dudinal edge portions of said blade inwardly rela-
tive to the converging ends of said cutters
whereby positively to prevent rubbing contact of
said blade with either of said cutters and also
insure accurate disposition of the blade in a plane
coincident with the axis of rotation of said head
in all positions of endwise adjustment of said
blade, means for turning said head to oper-
5 ate said cutters, and means for adjusting said
blade.
18 A. A pencil sharpener comprising a support,
a head rotatably mounted on said support, a pair

of diametrically opposed substantially cylindrical milling cutters carried by said head with their cutting faces in converging relationship to form a tapered space between said cutters, said cutters being of sufficient length and disposed close enough together to be capable of performing substantially the whole sharpening operation on a pencil, an elongated rectangular blade movable on said head endwise toward and between the converging ends of said cutters, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, means on said head outwardly from the converging ends of said cutters and connected to the outer end portion of said blade to adjust the same endwise, guides on the head between the converging end portions of the cutters disposed in the plane of the blade and adjustable radially relative to said head in said plane into engagement with opposed longitudinal edge portions of said blade for slidable supporting the inner end portion thereof inwardly from the converging end of said cutters to prevent rubbing contact of said blade with either of said cutters and also insure accurate disposition of the blade in a plane coincident with the axis of rotation of said head in all positions of endwise adjustment of said blade, and means for turning said head to operate said cutters.

19. A pencil sharpener comprising a support, a frame including a hollow driven journal end portion rotatably mounted in and projecting through a bearing on said support, milling cutters carried rotatably in said frame in converging relationship forming between them a space, a gear fixed on the support with which pinions fixed on the cutters have meshing engagement, whereby to drive said cutters, said frame including longitudinally extending diametrically opposed side portions adjacent the converging end portions of said cutters on which are provided flat surfaces lying in a plane passing mid-way between said converging ends for adjustably supporting guide plates, guide plates slidable endwise in said journal for axial adjustment between the converging ends of said cutters, and having its inner end portion closely slidable guided between the radially inner ends of said guide plates for endwise movement solely on the axis of rotation of said frame and journal, the endwise adjustment of said blade relative to said cutters predetermining the length of the lead protruding from the pencil when sharpened, a rotatable handle having a hub portion fixed on the outer end portion of said journal for turning said frame, and an adjusting stem threaded axially in the journal and having a swivel operating connection with the outer end of said blade to move the same selectively in either direction a selected distance.

EDWIN J. MARKVART.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,949,515</td>
<td>Norton</td>
<td>Mar. 6, 1934</td>
</tr>
<tr>
<td>2,134,749</td>
<td>Burt</td>
<td>Nov. 1, 1938</td>
</tr>
<tr>
<td>2,438,623</td>
<td>Yerkes</td>
<td>Mar. 30, 1948</td>
</tr>
</tbody>
</table>

FOREIGN PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Country</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>208,560</td>
<td>Switzerland</td>
<td>May 1, 1940</td>
</tr>
<tr>
<td>701,636</td>
<td>Germany</td>
<td>Jan. 21, 1941</td>
</tr>
<tr>
<td>212,131</td>
<td>Switzerland</td>
<td>Feb. 3, 1941</td>
</tr>
<tr>
<td>712,799</td>
<td>Germany</td>
<td>Oct. 25, 1941</td>
</tr>
</tbody>
</table>